Secure User-friendly Blockchain Modular Wallet Design Using Android & OP-TEE
Abstract
Emerging crypto economies still hemorrhage digital assets because legacy wallets leak private keys at almost every layer of the software stack, from user-space libraries to kernel memory dumps. This paper solves that twin crisis of security and interoperability by re-imagining key management as a platform-level service anchored in ARM TrustZone through OP-TEE. Our architecture fractures the traditional monolithic Trusted Application into per-chain modules housed in a multi-tenant TA store, finally breaking OP-TEE's single-binary ceiling. A cryptographically sealed firmware-over-the-air pipeline welds each TA set to an Android system image, enabling hot-swap updates while Verified Boot enforces rollback protection. Every package carries a chained signature developer first, registry second so even a compromised supply chain cannot smuggle malicious code past the Secure World's RSA-PSS gatekeeper. Inside the TEE, strict inter-TA isolation, cache partitioning, and GP-compliant crypto APIs ensure secrets never bleed across trust boundaries or timing domains. The Rich Execution Environment can interact only via hardware-mediated Secure Monitor Calls, collapsing the surface exposed to malware in Android space. End-users enjoy a single polished interface yet can install or retire Bitcoin, Ethereum, Solana, or tomorrow's chain with one tap, shrinking both storage footprint and audit scope. For auditors, the composition model slashes duplicated verification effort by quarantining blockchain logic inside narrowly scoped modules that share formally specified interfaces. Our threat analysis spans six adversary layers and shows how the design neutralizes REE malware sniffing, OTA injection, and cross-module side channels without exotic hardware. A reference implementation on AOSP exports a Wallet Manager HAL, custom SELinux domains, and a CI/CD pipeline that vet community modules before release. The result is not merely another hardware wallet but a programmable substrate that can evolve at the velocity of the blockchain ecosystem. By welding radical extensibility to hardware-anchored assurance, the platform closes the security-usability gap that has long stymied mass-market self-custody. We posit that modular TEEs are the missing OS primitive for Web3, much as virtual memory unlocked multi-tasking in classical computing. Together, these contributions sketch a blueprint for multi-chain asset management that is auditable, resilient, and poised for global deployment.