Federated Learning-Based Data Collaboration Method for Enhancing Edge Cloud AI System Security Using Large Language Models
Abstract
With the widespread application of edge computing and cloud systems in AI-driven applications, how to maintain efficient performance while ensuring data privacy has become an urgent security issue. This paper proposes a federated learning-based data collaboration method to improve the security of edge cloud AI systems, and use large-scale language models (LLMs) to enhance data privacy protection and system robustness. Based on the existing federated learning framework, this method introduces a secure multi-party computation protocol, which optimizes the data aggregation and encryption process between distributed nodes by using LLM to ensure data privacy and improve system efficiency. By combining advanced adversarial training techniques, the model enhances the resistance of edge cloud AI systems to security threats such as data leakage and model poisoning. Experimental results show that the proposed method is 15% better than the traditional federated learning method in terms of data protection and model robustness.