Robust quantum reservoir computers for forecasting chaotic dynamics: generalized synchronization and stability
Abstract
We show that recurrent quantum reservoir computers (QRCs) and their recurrence-free architectures (RF-QRCs) are robust tools for learning and forecasting chaotic dynamics from time-series data. First, we formulate and interpret quantum reservoir computers as coupled dynamical systems, where the reservoir acts as a response system driven by training data; in other words, quantum reservoir computers are generalized-synchronization (GS) systems. Second, we show that quantum reservoir computers can learn chaotic dynamics and their invariant properties, such as Lyapunov spectra, attractor dimensions, and geometric properties such as the covariant Lyapunov vectors. This analysis is enabled by deriving the Jacobian of the quantum reservoir update. Third, by leveraging tools from generalized synchronization, we provide a method for designing robust quantum reservoir computers. We propose the criterion $GS=ESP$: GS implies the echo state property (ESP), and vice versa. We analytically show that RF-QRCs, by design, fulfill $GS=ESP$. Finally, we analyze the effect of simulated noise. We find that dissipation from noise enhances the robustness of quantum reservoir computers. Numerical verifications on systems of different dimensions support our conclusions. This work opens opportunities for designing robust quantum machines for chaotic time series forecasting on near-term quantum hardware.