Can We Reliably Predict the Fed's Next Move? A Multi-Modal Approach to U.S. Monetary Policy Forecasting
Abstract
Forecasting central bank policy decisions remains a persistent challenge for investors, financial institutions, and policymakers due to the wide-reaching impact of monetary actions. In particular, anticipating shifts in the U.S. federal funds rate is vital for risk management and trading strategies. Traditional methods relying only on structured macroeconomic indicators often fall short in capturing the forward-looking cues embedded in central bank communications. This study examines whether predictive accuracy can be enhanced by integrating structured data with unstructured textual signals from Federal Reserve communications. We adopt a multi-modal framework, comparing traditional machine learning models, transformer-based language models, and deep learning architectures in both unimodal and hybrid settings. Our results show that hybrid models consistently outperform unimodal baselines. The best performance is achieved by combining TF-IDF features of FOMC texts with economic indicators in an XGBoost classifier, reaching a test AUC of 0.83. FinBERT-based sentiment features marginally improve ranking but perform worse in classification, especially under class imbalance. SHAP analysis reveals that sparse, interpretable features align more closely with policy-relevant signals. These findings underscore the importance of integrating textual and structured signals transparently. For monetary policy forecasting, simpler hybrid models can offer both accuracy and interpretability, delivering actionable insights for researchers and decision-makers.