Hemispheric-Specific Coupling Improves Modeling of Functional Connectivity Using Wilson-Cowan Dynamics
Abstract
Large-scale neural mass models have been widely used to simulate resting-state brain activity from structural connectivity. In this work, we extend a well-established Wilson--Cowan framework by introducing a novel hemispheric-specific coupling scheme that differentiates between intra-hemispheric and inter-hemispheric structural interactions. We apply this model to empirical cortical connectomes and resting-state fMRI data from matched control and schizophrenia groups. Simulated functional connectivity is computed from the band-limited envelope correlations of regional excitatory activity and compared against empirical functional connectivity matrices. Our results show that incorporating hemispheric asymmetries enhances the correlation between simulated and empirical functional connectivity, highlighting the importance of anatomically-informed coupling strategies in improving the biological realism of large-scale brain network models.