AICO: Feature Significance Tests for Supervised Learning
Abstract
The opacity of many supervised learning algorithms remains a key challenge, hindering scientific discovery and limiting broader deployment -- particularly in high-stakes domains. This paper develops model- and distribution-agnostic significance tests to assess the influence of input features in any regression or classification algorithm. Our method evaluates a feature's incremental contribution to model performance by masking its values across samples. Under the null hypothesis, the distribution of performance differences across a test set has a non-positive median. We construct a uniformly most powerful, randomized sign test for this median, yielding exact p-values for assessing feature significance and confidence intervals with exact coverage for estimating population-level feature importance. The approach requires minimal assumptions, avoids model retraining or auxiliary models, and remains computationally efficient even for large-scale, high-dimensional settings. Experiments on synthetic tasks validate its statistical and computational advantages, and applications to real-world data illustrate its practical utility.