TAG-WM: Tamper-Aware Generative Image Watermarking via Diffusion Inversion Sensitivity
Abstract
AI-generated content (AIGC) enables efficient visual creation but raises copyright and authenticity risks. As a common technique for integrity verification and source tracing, digital image watermarking is regarded as a potential solution to above issues. Among these, watermarking methods capable of preserving the generation quality are receiving increased attention. However, the proliferation and high performance of generative image editing applications have elevated the risks of malicious tampering, creating new demands. 1) The tamper robustness of current lossless visual quality watermarks remains constrained by the modification-sensitive diffusion inversion process, necessitating enhanced robustness. 2) The improved tampering quality and rapid iteration cycles render passive tampering detection methods inadequate, making proactive tampering localization capability a desired feature for watermarks. To address these requirements, this paper proposes a Tamper-Aware Generative image WaterMarking method named TAG-WM. The proposed method comprises four key modules: a dual-mark joint sampling (DMJS) algorithm for embedding copyright and localization watermarks into the latent space while preserving generative quality, the watermark latent reconstruction (WLR) utilizing reversed DMJS, a dense variation region detector (DVRD) leveraging diffusion inversion sensitivity to identify tampered areas via statistical deviation analysis, and the tamper-aware decoding (TAD) guided by localization results. The experimental results indicate that TAG-WM achieves SOTA tampering robustness and tampering localization capability with distortions while maintaining lossless generation quality and a considerable capacity of 256 bits.