An extended MDI interaction for transport models and neutron stars
Abstract
The momentum-dependent interaction (MDI) model, which has been widely used in microscopic transport models for heavy-ion collisions (HICs), is extended to include three different momentum-dependent terms and three zero-range density-dependent terms, dubbed as MDI3Y model. Compared to the MDI model, the single-nucleon potential in the MDI3Y model exhibits more flexible momentum-dependent behaviors. Furthermore, the inclusion of three zero-range density-dependent interactions follows the idea of Fermi momentum expansion, allowing more flexible variation for the largely uncertain high-density behaviors of nuclear matter equation of state (EOS), especially the symmetry energy. Moreover, we also obtain the corresponding Skyrme-like energy density functional through density matrix expansion of the finite-range exchange interactions. Based on the MDI3Y model, we construct four interactions with the same symmetry energy slope parameter $L=35$ MeV but different momentum dependence of $U_{\mathrm{sym}}$, by fitting the empirical nucleon optical potential, the empirical properties of symmetric nuclear matter, the microscopic calculations of pure neutron matter EOS and the astrophysical constraints on neutron stars. In addition, two interactions with $L=55$ and $75$ MeV are also constructed for comparison. Using these MDI3Y interactions, we study the properties of nuclear matter and neutron stars. These MDI3Y interactions, especially those with non-monotonic momentum dependence of $U_{\mathrm{sym}}$, will be potentially useful in transport model analyses of HICs data to extract nuclear matter EOS and the isospin splitting of nucleon effective masses.