Source Detection in Hypergraph Epidemic Dynamics using a Higher-Order Dynamic Message Passing Algorithm
Abstract
Source detection is crucial for capturing the dynamics of real-world infectious diseases and informing effective containment strategies. Most existing approaches to source detection focus on conventional pairwise networks, whereas recent efforts on both mathematical modeling and analysis of contact data suggest that higher-order (e.g., group) interactions among individuals may both account for a large fraction of infection events and change our understanding of how epidemic spreading proceeds in empirical populations. In the present study, we propose a message-passing algorithm, called the HDMPN, for source detection for a stochastic susceptible-infectious dynamics on hypergraphs. By modulating the likelihood maximization method by the fraction of infectious neighbors, HDMPN aims to capture the influence of higher-order structures and do better than the conventional likelihood maximization. We numerically show that, in most cases, HDMPN outperforms benchmarks including the likelihood maximization method without modification.