Gravitational Waves from Gauge Quanta Produced during Inflation
Abstract
A fast-rolling axion can transfer its kinetic energy to a gauge field via the Chern-Simons coupling, leading to copious production of gauge quanta, which can act as a source of gravitational waves (GWs) with potentially observable amplitudes. In this work, we investigate GW production in a spectator axion model when strong backreaction is taken into account. We find that decreasing the decay constant of the axion enhances GW production. Since the initial value of the axion is larger than its quantum fluctuations, such a condition imposes a lower bound on the axion dacay constant, which sets an upper bound on the amplitude of the energy spectrum of GWs. As a result, the amplitude of the predicted GW energy spectrum is lower than $10^{-10}$ in the nHz to mHz frequency range.