Prospects for probing dark matter particles and primordial black holes with the Square Kilometre Array using the 21 cm power spectrum at cosmic dawn
Abstract
Probing the nature of dark matter (DM) remains an outstanding problem in modern cosmology. The 21 cm signal, as a sensitive tracer of neutral hydrogen during cosmic dawn, provides a unique means to investigate DM nature during this critical epoch. Annihilation and decay of DM particles, as well as Hawking radiation of primordial black holes (PBHs), can modify the thermal and ionization histories of the early universe, leaving distinctive imprints on the 21 cm power spectrum. Therefore, the redshifted 21 cm power spectrum serves as a powerful tool to investigate such DM processes. In this work, we systematically assess the potential of the upcoming Square Kilometre Array (SKA) to constrain DM and PBH parameters using the 21 cm power spectrum. Assuming $10,000$ hours of integration time, the SKA is projected to reach sensitivities of $\langle\sigma v\rangle \leq 10^{-28}\,{\rm cm}^{3}\,{\rm s}^{-1}$ and $\tau\geq 10^{28}\,{\rm seconds}$, for $10\,{\rm GeV}$ DM particles. It can also probe PBHs with masses of $10^{16}\,\mathrm{g}$ and abundances $f_{\mathrm{PBH}} \leq 10^{-6}$. These results indicate that the SKA could place constraints on DM annihilation, decay, and PBH Hawking radiation that are up to two to three orders of magnitude stronger than current limits. Furthermore, the SKA is expected to exceed existing bounds on sub-GeV DM and to probe Hawking radiation from PBHs with masses above $10^{17}\,{\rm g}$, which are otherwise inaccessible by conventional cosmological probes. Overall, the SKA holds great promise for advancing our understanding of both DM particles and PBHs, potentially offering new insights into the fundamental nature of DM.