PUMA: Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning
Abstract
As multimedia content expands, the demand for unified multimodal retrieval (UMR) in real-world applications increases. Recent work leverages multimodal large language models (MLLMs) to tackle this task. However, their large parameter size results in high training costs and low inference efficiency. To address this, we propose PUMA: a Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning. Our approach improves UMR from both structural and learning perspectives. (1) Structurally, we propose Layer-Pruned Self-Distillation, which prunes MLLMs by keeping only shallow layers while distilling features from dropped deep layers as teacher signals. This reduces parameters and preserves representation capability. (2) On the learning side, we introduce Modality-Adaptive Contrastive Learning Loss (MAC-Loss), which separates in-batch negatives into harder intra-modality and easier inter-modality groups based on the target modality, assigning different temperature strategies to enhance learning efficiency. Experiments show our method significantly reduces resource usage while maintaining strong performance.