DVFS: A Dynamic Verifiable Fuzzy Search Service for Encrypted Cloud Data
Abstract
Cloud storage introduces critical privacy challenges for encrypted data retrieval, where fuzzy multi-keyword search enables approximate matching while preserving data confidentiality. Existing solutions face fundamental trade-offs between security and efficiency: linear-search mechanisms provide adaptive security but incur prohibitive overhead for large-scale data, while tree-based indexes improve performance at the cost of branch leakage vulnerabilities. To address these limitations, we propose DVFS - a dynamic verifiable fuzzy search service with three core innovations: (1) An \textit{adaptive-secure fuzzy search} method integrating locality-sensitive hashing with virtual binary trees, eliminating branch leakage while reducing search complexity from linear to sublinear ($O(\log n)$ time); (2) A \textit{dual-repository version control} mechanism supporting dynamic updates with forward privacy, preventing information leakage during operations; (3) A \textit{blockchain-based verification system} that ensures correctness and completeness via smart contracts, achieving $O(\log n)$ verification complexity. Our solution advances secure encrypted retrieval by simultaneously resolving the security-performance paradox and enabling trustworthy dynamic operations.