Stochastically Structured Reservoir Computers for Financial and Economic System Identification
Abstract
This paper introduces a methodology for identifying and simulating financial and economic systems using stochastically structured reservoir computers (SSRCs). The proposed framework leverages structure-preserving embeddings and graph-informed coupling matrices to model inter-agent dynamics with enhanced interpretability. A constrained optimization scheme ensures that the learned models satisfy both stochastic and structural constraints. Two empirical case studies, a dynamic behavioral model of resource competition among agents, and regional inflation network dynamics, illustrate the effectiveness of the approach in capturing and anticipating complex nonlinear patterns and enabling interpretable predictive analysis under uncertainty.