Encrypted-State Quantum Compilation Scheme Based on Quantum Circuit Obfuscation
Abstract
With the rapid advancement of quantum computing, quantum compilation has become a crucial layer connecting high-level algorithms with physical hardware. In quantum cloud computing, compilation is performed on the cloud side, which exposes user circuits to potential risks such as structural leakage and output predictability. To address these issues, we propose the encrypted-state quantum compilation scheme based on quantum circuit obfuscation (ECQCO), the first secure compilation framework tailored for the co-location of compilers and quantum hardware. It applies quantum homomorphic encryption to conceal output states and instantiates a structure obfuscation mechanism based on quantum indistinguishability obfuscation, effectively protecting both functionality and topology of the circuit. Additionally, an adaptive decoupling obfuscation algorithm is designed to suppress potential idle errors while inserting pulse operations. The proposed scheme achieves information-theoretic security and guarantees computational indistinguishability under the quantum random oracle model. Experimental results on benchmark datasets show that ECQCO achieves a TVD of up to 0.7 and a normalized GED of 0.88, enhancing compilation-stage security. Moreover, it introduces only a slight increase in circuit depth, while keeping the average fidelity change within 1%, thus achieving a practical balance between security and efficiency.