Large-scale entity resolution via microclustering Ewens--Pitman random partitions
Abstract
We introduce the microclustering Ewens--Pitman model for random partitions, obtained by scaling the strength parameter of the Ewens--Pitman model linearly with the sample size. The resulting random partition is shown to have the microclustering property, namely: the size of the largest cluster grows sub-linearly with the sample size, while the number of clusters grows linearly. By leveraging the interplay between the Ewens--Pitman random partition with the Pitman--Yor process, we develop efficient variational inference schemes for posterior computation in entity resolution. Our approach achieves a speed-up of three orders of magnitude over existing Bayesian methods for entity resolution, while maintaining competitive empirical performance.