An Explainable Equity-Aware P2P Energy Trading Framework for Socio-Economically Diverse Microgrid
Abstract
Fair and dynamic energy allocation in community microgrids remains a critical challenge, particularly when serving socio-economically diverse participants. Static optimization and cost-sharing methods often fail to adapt to evolving inequities, leading to participant dissatisfaction and unsustainable cooperation. This paper proposes a novel framework that integrates multi-objective mixed-integer linear programming (MILP), cooperative game theory, and a dynamic equity-adjustment mechanism driven by reinforcement learning (RL). At its core, the framework utilizes a bi-level optimization model grounded in Equity-regarding Welfare Maximization (EqWM) principles, which incorporate Rawlsian fairness to prioritize the welfare of the least advantaged participants. We introduce a Proximal Policy Optimization (PPO) agent that dynamically adjusts socio-economic weights in the optimization objective based on observed inequities in cost and renewable energy access. This RL-powered feedback loop enables the system to learn and adapt, continuously striving for a more equitable state. To ensure transparency, Explainable AI (XAI) is used to interpret the benefit allocations derived from a weighted Shapley value. Validated across six realistic scenarios, the framework demonstrates peak demand reductions of up to 72.6%, and significant cooperative gains. The adaptive RL mechanism further reduces the Gini coefficient over time, showcasing a pathway to truly sustainable and fair energy communities.