Street network sub-patterns and travel mode
Abstract
Urban morphology has long been recognized as a factor shaping human mobility, yet comparative and formal classifications of urban form across metropolitan areas remain limited. Building on theoretical principles of urban structure and advances in unsupervised learning, we systematically classified the built environment of nine U.S. metropolitan areas using structural indicators such as density, connectivity, and spatial configuration. The resulting morphological types were linked to mobility patterns through descriptive statistics, marginal effects estimation, and post hoc statistical testing. Here we show that distinct urban forms are systematically associated with different mobility behaviors, such as reticular morphologies being linked to significantly higher public transport use (marginal effect = 0.49) and reduced car dependence (-0.41), while organic forms are associated with increased car usage (0.44), and substantial declines in public transport (-0.47) and active mobility (-0.30). These effects are statistically robust (p < 1e-19), highlighting that the spatial configuration of urban areas plays a fundamental role in shaping transportation choices. Our findings extend previous work by offering a reproducible framework for classifying urban form and demonstrate the added value of morphological analysis in comparative urban research. These results suggest that urban form should be treated as a key variable in mobility planning and provide empirical support for incorporating spatial typologies into sustainable urban policy design.