Density-dependent transport coefficients in two-dimensional cellular aggregates
Abstract
The large-scale collective behavior of biological systems can be characterized by macroscopic transport, which arises from the non-equilibrium microscopic interactions among individual constituents. A prominent example is the formation of dynamic aggregates by motile eukaryotic cells or bacteria mediated by active contractile forces. In this work, we develop the two-dimensional fluctuating hydrodynamics theory based on the microscopic dynamics of a model system of aggregation by \textit{Neisseria gonorrhoeae} bacteria. The derivation of two macroscopic transport coefficients of bulk diffusivity and conductivity which determine hydrodynamic current of cells is the central result of this work. By showing how transport coefficients depend on cell density and microscopic parameters of the system we predict transport slowdown during the colony formation process. This study provides valuable analytical tools for quantifying hydrodynamic transport in experimental systems involving cellular aggregation occurring due to intermittent contractile dipole forces.