DynamiX: Large-Scale Dynamic Social Network Simulator
Abstract
Understanding the intrinsic mechanisms of social platforms is an urgent demand to maintain social stability. The rise of large language models provides significant potential for social network simulations to capture attitude dynamics and reproduce collective behaviors. However, existing studies mainly focus on scaling up agent populations, neglecting the dynamic evolution of social relationships. To address this gap, we introduce DynamiX, a novel large-scale social network simulator dedicated to dynamic social network modeling. DynamiX uses a dynamic hierarchy module for selecting core agents with key characteristics at each timestep, enabling accurate alignment of real-world adaptive switching of user roles. Furthermore, we design distinct dynamic social relationship modeling strategies for different user types. For opinion leaders, we propose an information-stream-based link prediction method recommending potential users with similar stances, simulating homogeneous connections, and autonomous behavior decisions. For ordinary users, we construct an inequality-oriented behavior decision-making module, effectively addressing unequal social interactions and capturing the patterns of relationship adjustments driven by multi-dimensional factors. Experimental results demonstrate that DynamiX exhibits marked improvements in attitude evolution simulation and collective behavior analysis compared to static networks. Besides, DynamiX opens a new theoretical perspective on follower growth prediction, providing empirical evidence for opinion leaders cultivation.