Efficient construction of fault-tolerant neutral-atom cluster states
Abstract
Cluster states are a useful resource in quantum computation, and can be generated by applying entangling gates between next-neighbor qubits. Heralded entangling gates offer the advantage of high post-selected fidelity, and can be used to create cluster states at the expense of large space-time overheads. We propose a low-overhead protocol to generate and merge high-fidelity many-atom entangled states into a 3D cluster state that supports fault-tolerant universal logical operations. Our simulations indicate that a state-of-the-art high-finesse optical cavity is sufficient for constructing a scalable fault-tolerant cluster state with loss and Pauli errors remaining an order of magnitude below their respective thresholds. This protocol reduces the space-time resource requirements for cluster state construction, highlighting the measurement-based method as an alternative approach to achieving large-scale error-corrected quantum processing with neutral atoms.