Pendulum Model of Spiking Neurons
Abstract
We propose a biologically inspired model of spiking neurons based on the dynamics of a damped, driven pendulum. Unlike traditional models such as the Leaky Integrate-and-Fire (LIF) neurons, the pendulum neuron incorporates second-order, nonlinear dynamics that naturally give rise to oscillatory behavior and phase-based spike encoding. This model captures richer temporal features and supports timing-sensitive computations critical for sequence processing and symbolic learning. We present an analysis of single-neuron dynamics and extend the model to multi-neuron layers governed by Spike-Timing Dependent Plasticity (STDP) learning rules. We demonstrate practical implementation with python code and with the Brian2 spiking neural simulator, and outline a methodology for deploying the model on neuromorphic hardware platforms, using an approximation of the second-order equations. This framework offers a foundation for developing energy-efficient neural systems for neuromorphic computing and sequential cognition tasks.