Large Language Model-Based Framework for Explainable Cyberattack Detection in Automatic Generation Control Systems
Abstract
The increasing digitization of smart grids has improved operational efficiency but also introduced new cybersecurity vulnerabilities, such as False Data Injection Attacks (FDIAs) targeting Automatic Generation Control (AGC) systems. While machine learning (ML) and deep learning (DL) models have shown promise in detecting such attacks, their opaque decision-making limits operator trust and real-world applicability. This paper proposes a hybrid framework that integrates lightweight ML-based attack detection with natural language explanations generated by Large Language Models (LLMs). Classifiers such as LightGBM achieve up to 95.13% attack detection accuracy with only 0.004 s inference latency. Upon detecting a cyberattack, the system invokes LLMs, including GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4o mini, to generate human-readable explanation of the event. Evaluated on 100 test samples, GPT-4o mini with 20-shot prompting achieved 93% accuracy in identifying the attack target, a mean absolute error of 0.075 pu in estimating attack magnitude, and 2.19 seconds mean absolute error (MAE) in estimating attack onset. These results demonstrate that the proposed framework effectively balances real-time detection with interpretable, high-fidelity explanations, addressing a critical need for actionable AI in smart grid cybersecurity.