XL-Calibur Polarimetry of Cyg X-1 Further Constrains the Origin of its Hard-state X-ray Emission
Abstract
The balloon-borne hard X-ray polarimetry mission XL-Calibur observed the Black Hole X-ray Binary (BHXRB) Cygnus X-1 (Cyg X-1) during its nearly six-day Long Duration Balloon (LDB) flight from Sweden to Canada in July 2024. The XL-Calibur observations allowed us to derive the most precise constraints to date of the Polarization Degree (PD) and Polarization Angle (PA) of the hard X-ray emission from a BHXRB. XL-Calibur observed Cyg X-1 in the hard state and measured a $\sim$19-64 keV PD of ($5.0^{+2.7}_{-3.0}$)% at a PA of $-28^{\circ}\pm 17^{\circ}$, with an 8.7% chance probability of detecting larger PDs than the one observed, given an unpolarized signal. The XL-Calibur results are thus comparable to the 2-8 keV PD and PA found by IXPE, with a similar agreement between the hard X-ray PA and the radio jet direction. We also discuss the implications of our polarization measurements in the context of models describing the origin of the broadband X-ray and $\gamma$-ray emission, to which XL-Calibur provides independent constraints on any proposed emission modeling.