Could Living Cells Use Phase Transitions to Process Information?
Abstract
To maintain homeostasis, living cells process information with networks of interacting molecules. Traditional models for cellular information processing have focused on networks of chemical reactions between molecules. Here, we describe how networks of physical interactions could contribute to the processing of information inside cells. In particular, we focus on the impact of biomolecular condensation, a structural phase transition found in cells. Biomolecular condensation has recently been implicated in diverse cellular processes. Some of these are essentially computational, including classification and control tasks. We place these findings in the broader context of physical computing, an emerging framework for describing how the native dynamics of nonlinear physical systems can be leveraged to perform complex computations. The synthesis of these ideas raises questions about expressivity (the range of problems that cellular phase transitions might be able to solve) and learning (how these systems could adapt and evolve to solve different problems). This emerging area of research presents diverse opportunities across molecular biophysics, soft matter, and physical computing.