Universal tradeoff relations between resource cost and irreversibility of channels: General-resource Wigner-Araki-Yanase theorems and beyond
Abstract
Quantum technologies offer exceptional -- sometimes almost magical -- speed and performance, yet every quantum process costs physical resources. Designing next-generation quantum devices, therefore, depends on solving the following question: which resources, and in what amount, are required to implement a desired quantum process? Casting the problem in the language of quantum resource theories, we prove a universal cost-irreversibility tradeoff: the lower the irreversibility of a quantum process, the greater the required resource cost for its realization. The trade-off law holds for a broad range of resources -- energy, magic, asymmetry, coherence, athermality, and others -- yielding lower bounds on resource cost of any quantum channel. Its broad scope positions this result as a foundation for deriving the following key results: (1) we show a universal relation between the energetic cost and the irreversibility for arbitrary channels, encompassing the energy-error tradeoff for any measurement or unitary gate; (2) we extend the energy-error tradeoff to free energy and work costs; (3) we extend the Wigner-Araki-Yanase theorem, which is the universal limitation on measurements under conservation laws, to a wide class of resource theories: the probability of failure in distinguishing resourceful states via a measurement is inversely proportional to its resource cost; (4) we prove that infinitely many resource-non-increasing operations in fact require an infinite implementation cost. These findings reveal a universal relationship between quantumness and irreversibility, providing a first step toward a general theory that explains when -- and how -- quantumness can suppress irreversibility.