Securing Sideways: Thwarting Lateral Movement by Implementing Active Directory Tiering
Abstract
The advancement of computing equipment and the advances in services over the Internet has allowed corporations, higher education, and many other organizations to pursue the shared computing network environment. A requirement for shared computing environments is a centralized identity system to authenticate and authorize user access. An organization's digital identity plane is a prime target for cyber threat actors. When compromised, identities can be exploited to steal credentials, create unauthorized accounts, and manipulate permissions-enabling attackers to gain control of the network and undermine its confidentiality, availability, and integrity. Cybercrime losses reached a record of 16.6 B in the United States in 2024. For organizations using Microsoft software, Active Directory is the on-premises identity system of choice. In this article, we examine the challenge of security compromises in Active Directory (AD) environments and present effective strategies to prevent credential theft and limit lateral movement by threat actors. Our proposed approaches aim to confine the movement of compromised credentials, preventing significant privilege escalation and theft. We argue that through our illustration of real-world scenarios, tiering can halt lateral movement and advanced cyber-attacks, thus reducing ransom escalation. Our work bridges a gap in existing literature by combining technical guidelines with theoretical arguments in support of tiering, positioning it as a vital component of modern cybersecurity strategy even though it cannot function in isolation. As the hardware advances and the cloud sourced services along with AI is advancing with unprecedented speed, we think it is important for security experts and the business to work together and start designing and developing software and frameworks to classify devices automatically and accurately within the tiered structure.