The Collaboration Paradox: Why Generative AI Requires Both Strategic Intelligence and Operational Stability in Supply Chain Management
Abstract
The rise of autonomous, AI-driven agents in economic settings raises critical questions about their emergent strategic behavior. This paper investigates these dynamics in the cooperative context of a multi-echelon supply chain, a system famously prone to instabilities like the bullwhip effect. We conduct computational experiments with generative AI agents, powered by Large Language Models (LLMs), within a controlled supply chain simulation designed to isolate their behavioral tendencies. Our central finding is the "collaboration paradox": a novel, catastrophic failure mode where theoretically superior collaborative AI agents, designed with Vendor-Managed Inventory (VMI) principles, perform even worse than non-AI baselines. We demonstrate that this paradox arises from an operational flaw where agents hoard inventory, starving the system. We then show that resilience is only achieved through a synthesis of two distinct layers: high-level, AI-driven proactive policy-setting to establish robust operational targets, and a low-level, collaborative execution protocol with proactive downstream replenishment to maintain stability. Our final framework, which implements this synthesis, can autonomously generate, evaluate, and quantify a portfolio of viable strategic choices. The work provides a crucial insight into the emergent behaviors of collaborative AI agents and offers a blueprint for designing stable, effective AI-driven systems for business analytics.