Query Logs Analytics: A Aystematic Literature Review
Abstract
In the digital era, user interactions with various resources such as databases, data warehouses, websites, and knowledge graphs (KGs) are increasingly mediated through digital platforms. These interactions leave behind digital traces, systematically captured in the form of logs. Logs, when effectively exploited, provide high value across industry and academia, supporting critical services (e.g., recovery and security), user-centric applications (e.g., recommender systems), and quality-of-service improvements (e.g., performance optimization). Despite their importance, research on log usage remains fragmented across domains, and no comprehensive study currently consolidates existing efforts. This paper presents a systematic survey of log usage, focusing on Database (DB), Data Warehouse (DW), Web, and KG logs. More than 300 publications were analyzed to address three central questions: (1) do different types of logs share common structural and functional characteristics? (2) are there standard pipelines for their usage? (3) which constraints and non-functional requirements (NFRs) guide their exploitation?. The survey reveals a limited number of end-to-end approaches, the absence of standardization across log usage pipelines, and the existence of shared structural elements among different types of logs. By consolidating existing knowledge, identifying gaps, and highlighting opportunities, this survey provides researchers and practitioners with a comprehensive overview of log usage and sheds light on promising directions for future research, particularly regarding the exploitation and democratization of KG logs.