AdaDPCC: Adaptive Rate Control and Rate-Distortion-Complexity Optimization for Dynamic Point Cloud Compression
Abstract
Dynamic point cloud compression (DPCC) is crucial in applications like autonomous driving and AR/VR. Current compression methods face challenges with complexity management and rate control. This paper introduces a novel dynamic coding framework that supports variable bitrate and computational complexities. Our approach includes a slimmable framework with multiple coding routes, allowing for efficient Rate-Distortion-Complexity Optimization (RDCO) within a single model. To address data sparsity in inter-frame prediction, we propose the coarse-to-fine motion estimation and compensation module that deconstructs geometric information while expanding the perceptive field. Additionally, we propose a precise rate control module that content-adaptively navigates point cloud frames through various coding routes to meet target bitrates. The experimental results demonstrate that our approach reduces the average BD-Rate by 5.81% and improves the BD-PSNR by 0.42 dB compared to the state-of-the-art method, while keeping the average bitrate error at 0.40%. Moreover, the average coding time is reduced by up to 44.6% compared to D-DPCC, underscoring its efficiency in real-time and bitrate-constrained DPCC scenarios. Our code is available at https://git.openi.org.cn/OpenPointCloud/Ada_DPCC.