Signed counting of partition matrices
Published: Aug 29, 2025
Last Updated: Aug 29, 2025
Authors:Shane Chern, Shishuo Fu
Abstract
We prove that the signed counting (with respect to the parity of the ``$\operatorname{inv}$'' statistic) of partition matrices equals the cardinality of a subclass of inversion sequences. In the course of establishing this result, we introduce an interesting class of partition matrices called improper partition matrices. We further show that a subset of improper partition matrices is equinumerous with the set of Motzkin paths. Such an equidistribution is established both analytically and bijectively.