Constructive l2-Discrepancy Minimization with Additive Deviations
Abstract
The \emph{signed series} problem in the $\ell_2$ norm asks, given set of vectors $v_1,\ldots,v_n\in \mathbf{R}^d$ having at most unit $\ell_2$ norm, does there always exist a series $(\varepsilon_i)_{i\in [n]}$ of $\pm 1$ signs such that for all $i\in [n]$, $\max_{i\in [n]} \|\sum_{j=1}^i \varepsilon_i v_i\|_2 = O(\sqrt{d})$. A result of Banaszczyk [2012, \emph{Rand. Struct. Alg.}] states that there exist signs $\varepsilon_i\in \{-1,1\},\; i\in [n]$ such that $\max_{i\in [n]} \|\sum_{j=1}^i \varepsilon_i v_i\|_2 = O(\sqrt{d+\log n})$. The best constructive bound known so far is of $O(\sqrt{d\log n})$, by Bansal and Garg [2017, \emph{STOC.}, 2019, \emph{SIAM J. Comput.}]. We give a polynomial-time randomized algorithm to find signs $x(i) \in \{-1,1\},\; i\in [n]$ such that \[ \max_{i\in [n]} \|\sum_{j=1}^i x(i)v_i\|_2 = O(\sqrt{d + \log^2 n}) = O(\sqrt{d}+\log n).\] By the constructive reduction of Harvey and Samadi [\emph{COLT}, 2014], this also yields a constructive bound of $O(\sqrt{d}+\log n)$ for the Steinitz problem in the $\ell_2$-norm. Thus, our result settles both conjectures when $d \geq \log^2n$. Our algorithm is based on the framework on Bansal and Garg, together with a new analysis involving $(i)$ additional linear and spectral orthogonality constraints during the construction of the covariance matrix of the random walk steps, which allow us to control the quadratic variation in the linear as well as the quadratic components of the discrepancy increment vector, alongwith $(ii)$ a ``Freedman-like" version of the Hanson-Wright concentration inequality, for filtration-dependent sums of subgaussian chaoses.