Deep Learning Option Pricing with Market Implied Volatility Surfaces
Abstract
We present a deep learning framework for pricing options based on market-implied volatility surfaces. Using end-of-day S\&P 500 index options quotes from 2018-2023, we construct arbitrage-free volatility surfaces and generate training data for American puts and arithmetic Asian options using QuantLib. To address the high dimensionality of volatility surfaces, we employ a variational autoencoder (VAE) that compresses volatility surfaces across maturities and strikes into a 10-dimensional latent representation. We feed these latent variables, combined with option-specific inputs such as strike and maturity, into a multilayer perceptron to predict option prices. Our model is trained in stages: first to train the VAE for volatility surface compression and reconstruction, then options pricing mapping, and finally fine-tune the entire network end-to-end. The trained pricer achieves high accuracy across American and Asian options, with prediction errors concentrated primarily near long maturities and at-the-money strikes, where absolute bid-ask price differences are known to be large. Our method offers an efficient and scalable approach requiring only a single neural network forward pass and naturally improve with additional data. By bridging volatility surface modeling and option pricing in a unified framework, it provides a fast and flexible alternative to traditional numerical approaches for exotic options.