An Explainable Framework for Particle Swarm Optimization using Landscape Analysis and Machine Learning
Abstract
Swarm intelligence algorithms have demonstrated remarkable success in solving complex optimization problems across diverse domains. However, their widespread adoption is often hindered by limited transparency in how algorithmic components influence performance. This work presents a multi-faceted investigation of Particle Swarm Optimization (PSO) to further understand the key role of different topologies for better interpretability and explainability. To achieve this objective, we first develop a comprehensive landscape characterization framework using Exploratory Landscape Analysis (ELA) to quantify problem difficulty and identify critical features affecting the optimization performance of PSO. Next, we conduct a rigorous empirical study comparing three fundamental swarm communication architectures -- Ring, Star, and Von Neumann topologies -- analysing their distinct impacts on exploration-exploitation balance, convergence behaviour, and solution quality and eventually develop an explainable benchmarking framework for PSO, to decode how swarm topologies affects information flow, diversity, and convergence. Based on this, a novel machine learning approach for automated algorithm configuration is introduced for training predictive models on extensive Area over the Convergence Curve (AOCC) data to recommend optimal settings based on problem characteristics. Through systematic experimentation across twenty four benchmark functions in multiple dimensions, we establish practical guidelines for topology selection and parameter configuration. These findings advance the development of more transparent and reliable swarm intelligence systems. The source codes of this work can be accessed at https://github.com/GitNitin02/ioh_pso.