Epsilon-Minimax Solutions of Statistical Decision Problems
Abstract
A decision rule is epsilon-minimax if it is minimax up to an additive factor epsilon. We present an algorithm for provably obtaining epsilon-minimax solutions of statistical decision problems. We are interested in problems where the statistician chooses randomly among I decision rules. The minimax solution of these problems admits a convex programming representation over the (I-1)-simplex. Our suggested algorithm is a well-known mirror subgradient descent routine, designed to approximately solve the convex optimization problem that defines the minimax decision rule. This iterative routine is known in the computer science literature as the hedge algorithm and it is used in algorithmic game theory as a practical tool to find approximate solutions of two-person zero-sum games. We apply the suggested algorithm to different minimax problems in the econometrics literature. An empirical application to the problem of optimally selecting sites to maximize the external validity of an experimental policy evaluation illustrates the usefulness of the suggested procedure.