Evolution, the mother of age-related diseases
Abstract
The evolutionary origins of ageing and age-associated diseases continue to pose a fundamental question in biology. This study is concerned with a recently proposed framework, which conceptualises development and ageing as a continuous process, driven by genetically encoded epigenetic changes in target sets of cells. According to the Evolvable Soma Theory of Ageing (ESTA), ageing reflects the cumulative manifestation of epigenetic changes that are predominantly expressed during the post-reproductive phase. These late-acting modifications are not yet evolutionarily optimised but are instead subject to ongoing selection, functioning as somatic "experiments" through which evolution explores novel phenotypic variation. These experiments are often detrimental, leading to progressive physical decline and eventual death, while a small subset may produce beneficial adaptations, that evolution can exploit to shape future developmental trajectories. According to ESTA, ageing can be understood as evolution in action, yet old age is also the strongest risk factor for major diseases such as cardiovascular diseases, cancer, neurodegenerative disorders, and metabolic syndrome. We argue that this association is not merely correlational but causal: the same epigenetic process that drive development and ageing also underlie age-associated diseases. Growing evidence points to epigenetic regulation as a central factor in these pathologies, since no consistent patterns of genetic mutations have been identified, whereas widespread regulatory and epigenetic disruptions are observed. From this perspective, evolution is not only the driver of ageing but also the ultimate source of the diseases that accompany it, making it the root cause of most age-related pathologies.