Real-Time String Dynamics in a $2+1$D Non-Abelian Lattice Gauge Theory: String Breaking, Glueball Formation, Baryon Blockade, and Tension Reduction
Abstract
Understanding flux string dynamics can provide insight into quark confinement and hadronization. First-principles quantum and numerical simulations have mostly focused on toy-model Abelian lattice gauge theories (LGTs). With the advent of state-of-the-art quantum simulation experiments, it is important to bridge this gap and study string dynamics in non-Abelian LGTs beyond one spatial dimension. Using tensor network methods, we simulate the real-time string dynamics of a $2\!+\!1$D SU$(2)$ Yang--Mills LGT with dynamical matter. In the strong-coupling regime and at resonance, string breaking occurs through sharp Casimir reduction along with meson and baryon-antibaryon formation, a distinctively non-Abelian feature. At finite baryon density, we discover a \textit{baryon blockade} mechanism that delays string breaking. Away from resonance, the magnetic term drives purely non-Abelian fluctuations: glueball loops and self-crossed strings that resolve two SU$(2)$ intertwiners with distinct dynamics. For higher-energy strings, we uncover representation-dependent tension-reduction resonances. Our findings serve as a guide for upcoming quantum simulators of non-Abelian LGTs.