Long memory score-driven models as approximations for rough Ornstein-Uhlenbeck processes
Abstract
This paper investigates the continuous-time limit of score-driven models with long memory. By extending score-driven models to incorporate infinite-lag structures with coefficients exhibiting heavy-tailed decay, we establish their weak convergence, under appropriate scaling, to fractional Ornstein-Uhlenbeck processes with Hurst parameter $H < 1/2$. When score-driven models are used to characterize the dynamics of volatility, they serve as discrete-time approximations for rough volatility. We present several examples, including EGARCH($\infty$) whose limits give rise to a new class of rough volatility models. Building on this framework, we carry out numerical simulations and option pricing analyses, offering new tools for rough volatility modeling and simulation.