ReFineG: Synergizing Small Supervised Models and LLMs for Low-Resource Grounded Multimodal NER
Abstract
Grounded Multimodal Named Entity Recognition (GMNER) extends traditional NER by jointly detecting textual mentions and grounding them to visual regions. While existing supervised methods achieve strong performance, they rely on costly multimodal annotations and often underperform in low-resource domains. Multimodal Large Language Models (MLLMs) show strong generalization but suffer from Domain Knowledge Conflict, producing redundant or incorrect mentions for domain-specific entities. To address these challenges, we propose ReFineG, a three-stage collaborative framework that integrates small supervised models with frozen MLLMs for low-resource GMNER. In the Training Stage, a domain-aware NER data synthesis strategy transfers LLM knowledge to small models with supervised training while avoiding domain knowledge conflicts. In the Refinement Stage, an uncertainty-based mechanism retains confident predictions from supervised models and delegates uncertain ones to the MLLM. In the Grounding Stage, a multimodal context selection algorithm enhances visual grounding through analogical reasoning. In the CCKS2025 GMNER Shared Task, ReFineG ranked second with an F1 score of 0.6461 on the online leaderboard, demonstrating its effectiveness with limited annotations.