An Advanced Convolutional Neural Network for Bearing Fault Diagnosis under Limited Data
Abstract
In the area of bearing fault diagnosis, deep learning (DL) methods have been widely used recently. However, due to the high cost or privacy concerns, high-quality labeled data are scarce in real world scenarios. While few-shot learning has shown promise in addressing data scarcity, existing methods still face significant limitations in this domain. Traditional data augmentation techniques often suffer from mode collapse and generate low-quality samples that fail to capture the diversity of bearing fault patterns. Moreover, conventional convolutional neural networks (CNNs) with local receptive fields makes them inadequate for extracting global features from complex vibration signals. Additionally, existing methods fail to model the intricate relationships between limited training samples. To solve these problems, we propose an advanced data augmentation and contrastive fourier convolution framework (DAC-FCF) for bearing fault diagnosis under limited data. Firstly, a novel conditional consistent latent representation and reconstruction generative adversarial network (CCLR-GAN) is proposed to generate more diverse data. Secondly, a contrastive learning based joint optimization mechanism is utilized to better model the relations between the available training data. Finally, we propose a 1D fourier convolution neural network (1D-FCNN) to achieve a global-aware of the input data. Experiments demonstrate that DAC-FCF achieves significant improvements, outperforming baselines by up to 32\% on case western reserve university (CWRU) dataset and 10\% on a self-collected test bench. Extensive ablation experiments prove the effectiveness of the proposed components. Thus, the proposed DAC-FCF offers a promising solution for bearing fault diagnosis under limited data.