SPARK: Adaptive Low-Rank Knowledge Graph Modeling in Hybrid Geometric Spaces for Recommendation
Abstract
Knowledge Graphs (KGs) enhance recommender systems but face challenges from inherent noise, sparsity, and Euclidean geometry's inadequacy for complex relational structures, critically impairing representation learning, especially for long-tail entities. Existing methods also often lack adaptive multi-source signal fusion tailored to item popularity. This paper introduces SPARK, a novel multi-stage framework systematically tackling these issues. SPARK first employs Tucker low-rank decomposition to denoise KGs and generate robust entity representations. Subsequently, an SVD-initialized hybrid geometric GNN concurrently learns representations in Euclidean and Hyperbolic spaces; the latter is strategically leveraged for its aptitude in modeling hierarchical structures, effectively capturing semantic features of sparse, long-tail items. A core contribution is an item popularity-aware adaptive fusion strategy that dynamically weights signals from collaborative filtering, refined KG embeddings, and diverse geometric spaces for precise modeling of both mainstream and long-tail items. Finally, contrastive learning aligns these multi-source representations. Extensive experiments demonstrate SPARK's significant superiority over state-of-the-art methods, particularly in improving long-tail item recommendation, offering a robust, principled approach to knowledge-enhanced recommendation. Implementation code is available at https://github.com/Applied-Machine-Learning-Lab/SPARK.