A note on disjointness and discrete elements in partially ordered vector spaces
Published: Sep 14, 2025
Last Updated: Sep 14, 2025
Authors:Jani Jokela
Abstract
The notions of disjointness and discrete elements play a prominent role in the classical theory of vector lattices. There are at least three different generalizations of the notion of disjointness to a larger class of partially ordered vector spaces. In recent years, one of these generalizations has been widely studied in the context of pre-Riesz spaces. The notion of $D$-disjointness is the most general of the three disjointness concepts. In this paper we study $D$-disjointness and the related concept of a $D$-discrete element. We establish some basic properties of $D$-discrete elements in Archimedean partially ordered spaces, and we investigate their relationship to discrete elements in the theory of pre-Riesz spaces.