Learning to Equalize: Data-Driven Frequency-Domain Signal Recovery in Molecular Communications
Abstract
In molecular communications (MC), inter-symbol interference (ISI) and noise are key factors that degrade communication reliability. Although time-domain equalization can effectively mitigate these effects, it often entails high computational complexity concerning the channel memory. In contrast, frequency-domain equalization (FDE) offers greater computational efficiency but typically requires prior knowledge of the channel model. To address this limitation, this letter proposes FDE techniques based on long short-term memory (LSTM) neural networks, enabling temporal correlation modeling in MC channels to improve ISI and noise suppression. To eliminate the reliance on prior channel information in conventional FDE methods, a supervised training strategy is employed for channel-adaptive equalization. Simulation results demonstrate that the proposed LSTM-FDE significantly reduces the bit error rate compared to traditional FDE and feedforward neural network-based equalizers. This performance gain is attributed to the LSTM's temporal modeling capabilities, which enhance noise suppression and accelerate model convergence, while maintaining comparable computational efficiency.