Analysing Python Machine Learning Notebooks with Moose
Abstract
Machine Learning (ML) code, particularly within notebooks, often exhibits lower quality compared to traditional software. Bad practices arise at three distinct levels: general Python coding conventions, the organizational structure of the notebook itself, and ML-specific aspects such as reproducibility and correct API usage. However, existing analysis tools typically focus on only one of these levels and struggle to capture ML-specific semantics, limiting their ability to detect issues. This paper introduces Vespucci Linter, a static analysis tool with multi-level capabilities, built on Moose and designed to address this challenge. Leveraging a metamodeling approach that unifies the notebook's structural elements with Python code entities, our linter enables a more contextualized analysis to identify issues across all three levels. We implemented 22 linting rules derived from the literature and applied our tool to a corpus of 5,000 notebooks from the Kaggle platform. The results reveal violations at all levels, validating the relevance of our multi-level approach and demonstrating Vespucci Linter's potential to improve the quality and reliability of ML development in notebook environments.