Augmented Reality-Enhanced Robot Teleoperation for Collecting User Demonstrations
Abstract
Traditional industrial robot programming is often complex and time-consuming, typically requiring weeks or even months of effort from expert programmers. Although Programming by Demonstration (PbD) offers a more accessible alternative, intuitive interfaces for robot control and demonstration collection remain challenging. To address this, we propose an Augmented Reality (AR)-enhanced robot teleoperation system that integrates AR-based control with spatial point cloud rendering, enabling intuitive, contact-free demonstrations. This approach allows operators to control robots remotely without entering the workspace or using conventional tools like the teach pendant. The proposed system is generally applicable and has been demonstrated on ABB robot platforms, specifically validated with the IRB 1200 industrial robot and the GoFa 5 collaborative robot. A user study evaluates the impact of real-time environmental perception, specifically with and without point cloud rendering, on task completion accuracy, efficiency, and user confidence. Results indicate that enhanced perception significantly improves task performance by 28% and enhances user experience, as reflected by a 12% increase in the System Usability Scale (SUS) score. This work contributes to the advancement of intuitive robot teleoperation, AR interface design, environmental perception, and teleoperation safety mechanisms in industrial settings for demonstration collection. The collected demonstrations may serve as valuable training data for machine learning applications.