Foundational theory for optimal decision tree problems. II. Optimal hypersurface decision tree algorithm
Abstract
Decision trees are a ubiquitous model for classification and regression tasks due to their interpretability and efficiency. However, solving the optimal decision tree (ODT) problem remains a challenging combinatorial optimization task. Even for the simplest splitting rules--axis-parallel hyperplanes--it is NP-hard to optimize. In Part I of this series, we rigorously defined the proper decision tree model through four axioms and, based on these, introduced four formal definitions of the ODT problem. From these definitions, we derived four generic algorithms capable of solving ODT problems for arbitrary decision trees satisfying the axioms. We also analyzed the combinatorial geometric properties of hypersurfaces, showing that decision trees defined by polynomial hypersurface splitting rules satisfy the proper axioms that we proposed. In this second paper (Part II) of this two-part series, building on the algorithmic and geometric foundations established in Part I, we introduce the first hypersurface decision tree (HODT) algorithm. To the best of our knowledge, existing optimal decision tree methods are, to date, limited to hyperplane splitting rules--a special case of hypersurfaces--and rely on general-purpose solvers. In contrast, our HODT algorithm addresses the general hypersurface decision tree model without requiring external solvers. Using synthetic datasets generated from ground-truth hyperplane decision trees, we vary tree size, data size, dimensionality, and label and feature noise. Results showing that our algorithm recovers the ground truth more accurately than axis-parallel trees and exhibits greater robustness to noise. We also analyzed generalization performance across 30 real-world datasets, showing that HODT can achieve up to 30% higher accuracy than the state-of-the-art optimal axis-parallel decision tree algorithm when tree complexity is properly controlled.