Draw a Portrait of Your Graph Data: An Instance-Level Profiling Framework for Graph-Structured Data
Abstract
Graph machine learning models often achieve similar overall performance yet behave differently at the node level, failing on different subsets of nodes with varying reliability. Standard evaluation metrics such as accuracy obscure these fine grained differences, making it difficult to diagnose when and where models fail. We introduce NodePro, a node profiling framework that enables fine-grained diagnosis of model behavior by assigning interpretable profile scores to individual nodes. These scores combine data-centric signals, such as feature dissimilarity, label uncertainty, and structural ambiguity, with model-centric measures of prediction confidence and consistency during training. By aligning model behavior with these profiles, NodePro reveals systematic differences between models, even when aggregate metrics are indistinguishable. We show that node profiles generalize to unseen nodes, supporting prediction reliability without ground-truth labels. Finally, we demonstrate the utility of NodePro in identifying semantically inconsistent or corrupted nodes in a structured knowledge graph, illustrating its effectiveness in real-world settings.