Distributed 3D Gaussian Splatting for High-Resolution Isosurface Visualization
Abstract
3D Gaussian Splatting (3D-GS) has recently emerged as a powerful technique for real-time, photorealistic rendering by optimizing anisotropic Gaussian primitives from view-dependent images. While 3D-GS has been extended to scientific visualization, prior work remains limited to single-GPU settings, restricting scalability for large datasets on high-performance computing (HPC) systems. We present a distributed 3D-GS pipeline tailored for HPC. Our approach partitions data across nodes, trains Gaussian splats in parallel using multi-nodes and multi-GPUs, and merges splats for global rendering. To eliminate artifacts, we add ghost cells at partition boundaries and apply background masks to remove irrelevant pixels. Benchmarks on the Richtmyer-Meshkov datasets (about 106.7M Gaussians) show up to 3X speedup across 8 nodes on Polaris while preserving image quality. These results demonstrate that distributed 3D-GS enables scalable visualization of large-scale scientific data and provide a foundation for future in situ applications.