Design and Optimization of EV Charging Infrastructure with Battery in Commercial Buildings
Abstract
The installation of electric vehicle (EV) charging stations in buildings is inevitable, as states push for increased EV adoption to support decarbonization efforts. This transition could force the need for grid infrastructure upgrades and enhanced controls to support reliable power delivery to end-use loads, and overall economic operation. This paper evaluates strategies that address these needs on two fronts: i) optimal sizing of service transformers and battery energy storage systems (BESS), and ii) optimized coordination between EV charging, BESS operation, and building demand. These strategies are applied to a school campus setting, consisting of building and EV charging loads, to provide an illustration of energy management in commercial buildings with EV fleets. A rolling-window optimization approach is applied to determine i) optimal sizing of the service transformer and BESS and ii) optimal control of EV charging and BESS charge/discharge schedules. The design and control strategies are validated in a 20-year time horizon with an annually increasing number of EVs (buses and vans). In addition, an economic analysis is also carried out to show the costs and benefits of each design as a medium- and long-term investment.