Approaches to Analysis and Design of AI-Based Autonomous Vehicles
Abstract
Artificial intelligence (AI) models are becoming key components in an autonomous vehicle (AV), especially in handling complicated perception tasks. However, closing the loop through AI-based feedback may pose significant risks on reliability of autonomous driving due to very limited understanding about the mechanism of AI-driven perception processes. To overcome it, this paper aims to develop tools for modeling, analysis, and synthesis for a class of AI-based AV; in particular, their closed-loop properties, e.g., stability, robustness, and performance, are rigorously studied in the statistical sense. First, we provide a novel modeling means for the AI-driven perception processes by looking at their error characteristics. Specifically, three fundamental AI-induced perception uncertainties are recognized and modeled by Markov chains, Gaussian processes, and bounded disturbances, respectively. By means of that, the closed-loop stochastic stability (SS) is established in the sense of mean square, and then, an SS control synthesis method is presented within the framework of linear matrix inequalities (LMIs). Besides the SS properties, the robustness and performance of AI-based AVs are discussed in terms of a stochastic guaranteed cost, and criteria are given to test the robustness level of an AV when in the presence of AI-induced uncertainties. Furthermore, the stochastic optimal guaranteed cost control is investigated, and an efficient design procedure is developed innovatively based on LMI techniques and convex optimization. Finally, to illustrate the effectiveness, the developed results are applied to an example of car following control, along with extensive simulation.